4.3 Article

A minimal mathematical model of nonphotochemical quenching of chlorophyll fluorescence

期刊

BIOSYSTEMS
卷 103, 期 2, 页码 196-204

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biosystems.2010.10.011

关键词

Photosynthesis; Light reactions; Nonphotochemical quenching of chlorophyll fluorescence; Chlorophyll fluorescence; Mathematical model

资金

  1. German Federal Ministry of Education and Research through the Systems Biology Research Initiative
  2. Scottish Funding Council through the Scottish Universities Life Science Alliance, SULSA

向作者/读者索取更多资源

Under natural conditions, plants are exposed to rapidly changing light intensities. To acclimate to such fluctuations, plants have evolved adaptive mechanisms that optimally exploit available light energy and simultaneously minimise damage of the photosynthetic apparatus through excess light. An important mechanism is the dissipation of excess excitation energy as heat which can be measured as nonphotochemical quenching of chlorophyll fluorescence (NPQ). In this paper, we present a highly simplified mathematical model that captures essential experimentally observed features of the short term adaptive quenching dynamics. We investigate the stationary and dynamic behaviour of the model and systematically analyse the dependence of characteristic system properties on key parameters such as rate constants and pool sizes. Comparing simulations with experimental data allows to derive conclusions about the validity of the simplifying assumptions and we further propose hypotheses regarding the role of the xanthophyll cycle in NPQ. We envisage that the presented theoretical description of the light reactions in conjunction with short term adaptive processes serves as a basis for the development of more detailed mechanistic models by which the molecular mechanisms of NPQ can be theoretically studied. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据