4.7 Article

Iron nanoparticles-based supramolecular hydrogels to originate anisotropic hybrid materials with enhanced mechanical strength

期刊

MATERIALS CHEMISTRY FRONTIERS
卷 2, 期 4, 页码 686-699

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7qm00573c

关键词

-

资金

  1. Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica, MINECO (Spain) [CTQ-2014-53598-R, FIS2013-41821-R]
  2. ERDF
  3. Agencia Estatal de Investigacion, AEI, Spain [FIS2017-85954-R]
  4. Fondo Europeo de Desarrollo Regional, ERDF, European Union
  5. Junta de Andalucia (Spain) [P12-FQM-2721]
  6. Unidad de Excelencia Quimica aplicada a Biomedicina y Medioambiente'' (UGR)
  7. European Union

向作者/读者索取更多资源

Here, we report the synthesis and structural characterization of novel iron nanoparticles (FeNPs)-based short-peptide supramolecular hydrogels. These hybrid hydrogels composed of Fmoc-diphenylalanine (Fmoc-FF) peptide and FeNPs were prepared through the self-assembly of Fmoc-FF in a suspension containing FeNPs in the presence or absence of an external magnetic field. Optical images of these hydrogels revealed the formation of column-like aggregates of FeNPs when the gels were formed in the presence of a magnetic field. Moreover, the intricate structure derived from the interwoven nature of the fiber peptides with these FeNP column-like aggregates resulted in anisotropic materials, more rigid under shear forces applied perpendicularly to the direction of the aggregates, presenting under these conditions values of G' (storage modulus) about 7 times those of the native hydrogel. To the best of our knowledge, this is the first example in which the mechanical properties of peptide hydrogels were strongly enhanced due to the presence of FeNPs. A theoretical model trying to explain this phenomenon is presented. Quite interesting CD, FTIR and synchrotron X-ray diffraction analyses indicated that the anti-parallel beta-sheet arrangement of Fmoc-FF peptide was highly conserved in the hydrogels containing FeNPs. Moreover, FLCS measurements showed that the diffusion of a small solute through the hydrogel network was improved in hydrogels containing FeNPs, probably caused by the formation of preferential channels for diffusion. Taken together, our results provide a new method for the synthesis of novel hybrid Fmoc-FF-FeNPs anisotropic hydrogels with enhanced mechanical strength and water-like diffusion behavior, thus easing their application in drug delivery and tissue engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据