4.6 Article

One pot synthesis of GDP-mannose by a multi-enzyme cascade for enzymatic assembly of lipid-linked oligosaccharides

期刊

BIOTECHNOLOGY AND BIOENGINEERING
卷 115, 期 1, 页码 192-205

出版社

WILEY
DOI: 10.1002/bit.26454

关键词

cell-free synthesis; enzymatic catalysis; kinetic modeling; in vitro N-glycoengineering; nucleotide sugar regeneration

资金

  1. Bundesministerium fur Bildung und Forschung [031A156A, 031A156B]

向作者/读者索取更多资源

Glycosylation of proteins is a key function of the biosynthetic-secretory pathway in the endoplasmic reticulum (ER) and Golgi apparatus. Glycosylated proteins play a crucial role in cell trafficking and signaling, cell-cell adhesion, blood-group antigenicity, and immune response. In addition, the glycosylation of proteins is an important parameter in the optimization of many glycoprotein-based drugs such as monoclonal antibodies. In vitro glycoengineering of proteins requires glycosyltransferases as well as expensive nucleotide sugars. Here, we present a designed pathway consisting of five enzymes, glucokinase (Glk), phosphomannomutase (ManB), mannose-1-phosphate-guanyltransferase (ManC), inorganic pyrophosphatase (PmPpA), and 1-domain polyphosphate kinase 2 (1D-Ppk2) expressed in E. coli for the cell-free production and regeneration of GDP-mannose from mannose and polyphosphate with catalytic amounts of GDP and ADP. It was shown that GDP-mannose is produced at various conditions, that is pH 7-8, temperature 25-35 degrees C and co-factor concentrations of 5-20mM MgCl2. The maximum reaction rate of GDP-mannose achieved was 2.7M/min at 30 degrees C and 10mM MgCl2 producing 566nmol GDP-mannose after a reaction time of 240min. With respect to the initial GDP concentration (0.8mM) this is equivalent to a yield of 71%. Additionally, the cascade was coupled to purified, transmembrane-deleted Alg1 (ALG1TM), the first mannosyltransferase in the ER-associated lipid-linked oligosaccharide (LLO) assembly. Thereby, in a one-pot reaction, phytanyl-PP-(GlcNAc)(2)-Man(1) was produced with efficient nucleotide sugar regeneration for the first time. Phytanyl-PP-(GlcNAc)(2)-Man(1) can serve as a substrate for the synthesis of LLO for the cell-free in vitro glycosylation of proteins. A high-performance anion exchange chromatography method with UV and conductivity detection (HPAEC-UV/CD) assay was optimized and validated to determine the enzyme kinetics. The established kinetic model enabled the optimization of the GDP-mannose regenerating cascade and can further be used to study coupling of the GDP-mannose cascade with glycosyltransferases. Overall, the study envisages a first step towards the development of a platform for the cell-free production of LLOs as precursors for in vitro glycoengineering of proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据