4.8 Article

Direct electrochemical determination of Candida albicans activity

期刊

BIOSENSORS & BIOELECTRONICS
卷 49, 期 -, 页码 192-198

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2013.05.015

关键词

Bio-electrochemistry of Candida albicans; Pathogen detection; Mitochondrial respiratory chain; Cytochrome c oxidase

资金

  1. Egyptian government via the Egyptian ministry of higher education and scientific research

向作者/读者索取更多资源

Despite advances made in the field, rapid detection methods for the human pathogen Candida albicans are still missing. In this regard, bio-electrochemical systems including electrochemical sensors and biosensors satisfy the increasing demand for rapid, reliable, and direct microbial analyses. In this study, the bioelectrochemical characteristics of C albicans were investigated for use in an analytical system that determines the viability of the organisms. The electrochemical responses of viable and non-viable cells of C albicans and Saccharomyces cerevisiae were monitored. Cyclic voltammograms (CV) showed an irreversible oxidation peak at about 750 mV that accounts for viable cells. The peak current increased at viable cell numbers ranging from 3 x 10(5) to 1.6 x 10(7) cells/ml, indicating that the amount of viable cells can be accurately quantified. To elucidate the underlying electron transfer processes, the influence of electron transfer chain (ETC) - inhibitors on the electrochemical behavior of the two organisms were investigated. Inhibition of the function of classical respiratory chain (CRC) led to a decrease in the electrochemical response, whereas the oxidation current increased when the alternative oxidase (AOX) pathway was blocked by salicylhydroxamic acid (SHA). Blocking the AOX pathway improved the electrochemical performance, suggesting an involvement in the CRC, with cytochrome c oxidase (COX) as a relevant protein complex. Mutants, in which components of COX were deleted, showed a lower electro-activity than the wild-type strain. Particularly, deletion of subunit COX5a almost completely abolished the electrochemical signal. We believe that this work can be utilized for the development of early detection assays and opens the door for new technological developments in the field of C albicans. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据