4.7 Article

Formation of BiOI/g-C3N4 nanosheet composites with high visible-light-driven photocatalytic activity

期刊

CHINESE JOURNAL OF CATALYSIS
卷 39, 期 4, 页码 654-663

出版社

SCIENCE PRESS
DOI: 10.1016/S1872-2067(17)62927-9

关键词

g-C3N4; BiOI; Nanosheet; Photodegradation; Double-transfer mechanism; Visible light

资金

  1. Natural Science Basic Research Plan in Shaanxi Province of China [2017JZ001]
  2. National Natural Science Foundation of China [21303130]
  3. State Key Laboratory of Heavy Oil Processing [SKLOP201602001]
  4. Fundamental Research Funds for the Central Universities [cxtd2017004]

向作者/读者索取更多资源

Constructing binary heterojunctions is an important strategy to improve the photocatalytic performance of graphitic carbon nitride (g-C3N4). In this paper, a novel g-C3N4 nanosheet-based composite was constructed via in situ growth of bismuth oxyiodide (BiOI) nanoplates on the surface of g-C(3)N4 nanosheets. The crystal phase, microstructure, optical absorption and textural properties of the synthesized photocatalysts were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy (DRS), and nitrogen adsorption-desorption isotherm measurements. The BiOI/g-C(3)N4 nanosheet composite showed high activity and recyclability for the photodegradation of the target pollutant rhodamine B (RhB). The conversion of RhB (20 mg L-1) by the photocatalyst was nearly 100% after 50 min under visible-light irradiation. The high photoactivity of the BiOl/g-C3N4 nanosheet composite can be attributed to the enhanced visible-light absorption of the g-C3N4 nanosheets sensitized by BiOI nanoplates as well as the high charge separation efficiency obtained by the establishment of an internal electric field between the n-type g-C3N4 and p-type BiOI. Based on the characterization and experimental results, a double-transfer mechanism of the photoinduced electrons in the BiOl/g-C3N4 nanosheet composite was proposed to explain its activity. This work represents a new strategy to understand and realize the design and synthesis of g-C3N4 nanosheet-based heterojunctions that display highly efficient charge separation and transfer. (C) 2018, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据