4.8 Article

Beta-cyclodextrin decorated nanostructured SERS substrates facilitate selective detection of endocrine disruptor chemicals

期刊

BIOSENSORS & BIOELECTRONICS
卷 42, 期 -, 页码 632-639

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2012.10.075

关键词

Endocrine disruptor chemicals; Surface enhanced Raman scattering; Nanosphere lithography; Beta-cyclodextrin

资金

  1. CSIRO Flagship Collaboration Fund

向作者/读者索取更多资源

We demonstrate the selective detection of endocrine disruptor chemicals (EDCs) from river water using surface enhanced Raman scattering (SERS). By means of nanosphere lithography, the SERS substrate was prepared via the initial deposition of a monolayer of silica nanospheres (with diameter of similar to 330 nm) on a silicon substrate as the template. Subsequently, a 180 nm thick layer of silver followed by a 20 nm layer of gold was deposited. This surface was modified with mono-6-deoxy-6-((2-mercaptoethyl)amino)-beta-cyclodextrin (beta-CD) in order to produce a selective capture surface suitable for EDC capture and their detection by means of SERS. We show that EDC model compounds, including 3-amino-2-naphthoic acid (NAPH), potassium hydrogen phthalate (PHTH) and the EDC beta-estradiol (ESTR), were captured by the beta-CD decorated surface. This surface facilitated SERS detection with limits of detection of 3.0 mu M (NAPH), 10 mu M (PHTH) and 300 nM (ESTR), all 10-100 times lower than that without the surface modification with beta-CD. Individual and simultaneous detection of NAPH and PHTH from their mixture was achieved as evidenced using the bianalyte Raman technique. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据