4.8 Review

Thermal runaway mechanism of lithium ion battery for electric vehicles: A review

期刊

ENERGY STORAGE MATERIALS
卷 10, 期 -, 页码 246-267

出版社

ELSEVIER
DOI: 10.1016/j.ensm.2017.05.013

关键词

Lithium ion battery; Electric vehicle; Thermal runaway; Battery safety; Internal short circuit

资金

  1. National Natural Science Foundation of China [U1564205]
  2. Ministry of Science and Technology of China [2016YFE0102200]

向作者/读者索取更多资源

The safety concern is the main obstacle that hinders the large-scale applications of lithium ion batteries in electric vehicles. With continuous improvement of lithium ion batteries in energy density, enhancing their safety is becoming increasingly urgent for the electric vehicle development. Thermal runaway is the key scientific problem in battery safety research. Therefore, this paper provides a comprehensive review on the thermal runaway mechanism of the commercial lithium ion battery for electric vehicles. Learning from typical accidents, the abuse conditions that may lead to thermal runaway have been summarized. The abuse conditions include mechanical abuse, electrical abuse, and thermal abuse. Internal short circuit is the most common feature for all the abuse conditions. The thermal runaway follows a mechanism of chain reactions, during which the decomposition reaction of the battery component materials occurs one after another. A novel energy release diagram, which can quantify the reaction kinetics for all the battery component materials, is proposed to interpret the mechanisms of the chain reactions during thermal runaway. The relationship between the internal short circuit and the thermal runaway is further clarified using the energy release diagram with two cases. Finally, a three-level protection concept is proposed to help reduce the thermal runaway hazard. The three-level protection can be fulfilled by providing passive defense and early warning before the occurrence of thermal runaway, by enhancing the intrinsic thermal stability of the materials, and by reducing the secondary hazard like thermal runaway propagation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据