4.8 Article

Quantification of surface etching by common buffers and implications on the accuracy of label-free biological assays

期刊

BIOSENSORS & BIOELECTRONICS
卷 36, 期 1, 页码 222-229

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2012.04.020

关键词

DNA microarrays; Proteins microarrays; Label-free detection; Optical interferometry; Glass stability; Buffer effect

资金

  1. Boston University Center for Nanoscience and Nanobiotechnology
  2. U.S. Army Research Laboratory [W911NF-06-2-0040]
  3. National Science Foundation International Research Experiences for Students [OISE-0601631]

向作者/读者索取更多资源

High throughput analyses in biochemical assays are gaining popularity in the post-genomic era. Multiple label-free detection methods are especially of interest, as they allow quantitative monitoring of biomolecular interactions. It is assumed that the sensor surface is stable to the surrounding medium while the biochemical processes are taking place. Using the Interferometric Reflectance Imaging Sensor (IRIS), we found that buffers commonly used in biochemical reactions can remove silicon dioxide, a material frequently used as the solid support in the microarray industry. Here, we report 53 pm to 731 pm etching of the surface silicon oxide over a 12-h period for several different buffers, including various concentrations of SSC, SSPE, PBS, TRIS, MES, sodium phosphate, and potassium phosphate buffers, and found that PBS and MES buffers are much more benign than the others. We observe a linear dependence of the etch depth over time, and we find the etch rate of silicon dioxide in different buffers that ranges from 2.73 +/- 0.76 pm/h in 1 M NaCl to 43.54 +/- 2.95 pm/h in 6 x SSC. The protective effects by chemical modifications of the surface are explored. We demonstrate unaccounted glass etching leading to erroneous results with label-free detection of DNA microarrays, and offer remedies to increase the accuracy of quantitative analysis. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据