4.8 Article

Graphene-assisted dual amplification strategy for the fabrication of sensitive amperometric immunosensor

期刊

BIOSENSORS & BIOELECTRONICS
卷 26, 期 8, 页码 3627-3632

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2011.02.018

关键词

Graphene; Gold nanoparticle; Electrochemical immunosensor; Signal amplification

资金

  1. National Natural Science Foundation of China [20821063, 20775030]
  2. 973 Program [2011CB933502]

向作者/读者索取更多资源

A sensitive electrochemical immunosensor with graphene-assisted signal amplification has been developed. In order to construct the base of the immunosensor, a novel hybrid architecture was initially fabricated by combining poly (diallyldimethylammonium chloride) functionalized graphene nanosheets (PDDA-G) and gold nanoparticles (AuNPs) via a simple sonication-induced assembly. The formed hybrid architecture provided an effective matrix for antibody immobilization with good stability and bioactivity. Subsequently, a smart, multilabel, and graphene-based nanoprobe that contains gold nanoparticles functionalized exfoliated graphene oxide and horseradish peroxidase-secondary antibodies was designed for constructing a novel sandwiched electrochemical immunosensor. Enhanced sensitivity was obtained by combining the advantages of high-binding capability and excellent electrical conductivity of hybrid architecture with the multilabel signal amplification. On the basis of the dual signal amplification strategy of graphene-based architecture and the multilabel, the immunosensor displayed excellent analytical performance for the detection of human IgG (HIgG) range from 0.1 to 200 ng/mL with a detection limit of 0.05 ng/mL at 3 sigma. Moreover, the proposed method showed good precision, acceptable stability and reproducibility, and could be used for the detection of HIgG in real samples. Therefore, the present strategy definitely paves a way for the wide application of graphene in clinical research. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据