4.8 Article

Styryl-BODIPY based red-emitting fluorescent OFF-ON molecular probe for specific detection of cysteine

期刊

BIOSENSORS & BIOELECTRONICS
卷 26, 期 6, 页码 3012-3017

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2010.12.004

关键词

Thiols; Molecular probe; BODIPY; Dark state; Density functional theory; Cysteine

资金

  1. NSFC [20972024, 21073028]
  2. Fundamental Research Funds for the Central Universities [DUT10ZD212]
  3. Ministry of Education [SRFDP-200801410004, NCET-08-0077]
  4. Royal Society (UK)
  5. NSFC (China-UK Cost-Share Science Networks) [21011130154]
  6. State Key Laboratory of Fine Chemicals [KF0802]
  7. State Key Laboratory of Chemo/Biosensing and Chemometrics [2008009]
  8. Education Department of Liaoning Province [2009T015]
  9. Dalian University of Technology

向作者/读者索取更多资源

We have synthesized a styryl boron-dipyrromethene (BODIPY)/2,4-dinitrobenzenesulfonyl (DNBS) dyad based red-emitting molecular probe for specific detection of cysteine among the biological thiols. The probe shows intensive absorption at 556 nm and the probe is non-fluorescent. The DNBS moiety can be cleaved off by thiols, the red emission of the BODIPY fluorophore at 590 nm is switched on, with an emission enhancement of 46-fold. The probe shows good specificity toward cysteine over other biological molecules, such as glutathione and amino acids. The emission of the probe is pH-independent in the physiological pH range. The probe is used for fluorescent imaging of cellular thiols. Theoretical calculations based on density functional theory (DFT) were used to elucidate the fluorescence sensing mechanism of the probe, which indicate a dark excited state (S-1) for the probe but an emissive excited state (S-1) for the cleaved product (i.e. the fluorophore). (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据