4.8 Article

Electrochemical detection of oligonucleotide by attaching redox probes onto its backbone

期刊

BIOSENSORS & BIOELECTRONICS
卷 26, 期 5, 页码 2670-2674

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2010.03.017

关键词

Electrochemical biosensor; DNA; PNA; Linker; Backbone

向作者/读者索取更多资源

An approach was demonstrated to detect oligonucleotide by attaching redox probes onto its backbone. First, peptide nucleic acid (PNA) with a neutral backbone was immobilized onto a gold (Au) electrode surface as a capture. Second, when the PNA capture hybridized with a target oligonucleotide (a short DNA), an assembly of Au-PNA-DNA formed and phosphate groups were thus brought into the assembly from the DNA's backbone. The linker ion of Zr(4+) exhibits a strong coordination interaction with the phosphate group and the carboxylic group. The hybridized target DNA provides the phosphate group while a derivatized redox probe of ferrocene (Fc) carboxyl acid offers the carboxylic group. Therefore, the redox probe can be attached to the phosphate group by the linker to form an assembly of Au-PNA-DNA-Zr-Fc. Its redox process was studied and the detection conditions of oligonucleotide were optimized. A limit of detection of 1.0 x 10(-12) M or similar to 2 attomol was reached. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据