4.8 Article

A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode

期刊

BIOSENSORS & BIOELECTRONICS
卷 25, 期 6, 页码 1402-1407

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2009.10.038

关键词

Cupric oxide; Carbon nanotubes; Electroanalysis; Glucose; Sensor

资金

  1. National Natural Science Foundation of China [20773041]
  2. Research Fund for the Doctoral Program of Higher Education [20070561008]
  3. Ministry of Science and Technology (MOST) of China [2008AA06Z311]

向作者/读者索取更多资源

In this report, a novel type of cupric oxide (CuO) nanoparticles-modified multi-walled carbon nanotubes (MWCNTs) array electrode for sensitive nonenzymatic glucose detection has been fabricated. The morphology of the nanocomposite was characterized by transmission electron microscopy and Xray diffraction. The electrochemical performance of the CuO/MWCNTs electrode for detection of glucose was investigated by cyclic voltammetry and chronoamperometry. The CuO/MWCNTs electrode showed much higher electrocatalytic activity and lower overvoltage than the bare MWCNTs electrode towards oxidation of glucose. At an applied potential of +0.40V, the CuO/MWCNTs electrode presented a high sensitivity of 2596 mu A mM(-1) cm(-2) to glucose. In addition, linear range was obtained over a concentration up to 1.2 mM with a detection limit of 0.2 mu M (signal/noise = 3). The response time is about 1 s with addition of 0.10 mM glucose. More importantly, the CuO/MWCNTs electrode is also highly resistant against poisoning by chloride ion, and the interference from the oxidation of common interfering species such as ascorbic acid, dopamine, uric acid and carbohydrate compounds is effectively avoided. In addition, the CuO/MWCNTs electrode was also used to analyze glucose concentration in human serum samples. The Cuo/MWCNTs electrode exhibits an enhanced electrocatalytic property, low working potential, high sensitivity, excellent selectivity, good stability, and fast amperometric sensing towards oxidation of glucose, thus is promising for the future development of nonenzymatic glucose sensors. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据