4.8 Article

A molecular paramagnetic spin-doped biopolymeric oxygen sensor

期刊

BIOSENSORS & BIOELECTRONICS
卷 25, 期 10, 页码 2283-2289

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2010.03.011

关键词

EPR; Oximetry; Oxygen sensor; Trityl radical; Spin-doping; PDMS

资金

  1. NIH [EB004031]
  2. US-Israel Binational Science Foundation (BSF) [2005258]
  3. Direct For Mathematical & Physical Scien
  4. Division Of Mathematical Sciences [2005258] Funding Source: National Science Foundation

向作者/读者索取更多资源

Electron paramagnetic resonance (EPR) oximetry is a powerful technique capable of providing accurate, reliable, and repeated measurements of tissue oxygenation, which is crucial to the diagnosis and treatment of several pathophysiological conditions. Measurement of tissue pO(2) by EPR involves the use of paramagnetic, oxygen-sensitive probes, which can be either soluble (molecular) in nature or insoluble paramagnetic materials. Development of innovative strategies to enhance the biocompatibility and in vivo application of these oxygen-sensing probes is crucial to the growth and clinical applicability of EPR oximetry. Recent research efforts have aimed at encapsulating particulate probes in bioinert polymers for the development of biocompatible EPR probes. In this study, we have developed novel EPR oximetry probes, called perchlorotriphenylmethyl triester (PTM-TE):polydimethyl siloxane (PDMS) chips, by dissolving and incorporating the soluble (molecular) EPR probe, PTM-TE, in an oxygen-permeable polymer matrix, PDMS. We demonstrate that such incorporation (doping) of PTM-TE in PDMS enhanced its oxygen sensitivity several fold. The cast-molding method of fabricating chips enabled them to be made with increasing amounts of PTM-TE (spin density). Characterization of the spin distribution within the PDMS matrix, using EPR micro-imaging, revealed potential inhomogeneties, albeit with no adverse effect on the oxygen-sensing characteristics of PTM-TE:PDMS. The chips were resistant to autoclaving or in vitro oxido-reductant treatment, thus exhibiting excellent in vitro biostability. Our results establish PTM-TE:PDMS as a viable probe for biological oxygen-sensing, and also validate the incorporation of soluble probes in polymer matrices as an innovative approach to the development of novel probes for EPR oximetry. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据