4.4 Article

Distributed Representations of Tuples for Entity Resolution

期刊

PROCEEDINGS OF THE VLDB ENDOWMENT
卷 11, 期 11, 页码 1454-1467

出版社

ASSOC COMPUTING MACHINERY
DOI: 10.14778/3236187.3236198

关键词

-

向作者/读者索取更多资源

Despite the efforts in 70+ years in all aspects of entity resolution (ER), there is still a high demand for democratizing ER - by reducing the heavy human involvement in labeling data, performing feature engineering, tuning parameters, and defining blocking functions. With the recent advances in deep learning, in particular distributed representations of words (a.k.a. word embeddings), we present a novel ER system, called DEEPER, that achieves good accuracy, high efficiency, as well as ease-of-use (i.e., much less human efforts). We use sophisticated composition methods, namely uni- and bi-directional recurrent neural networks (RNNs) with long short term memory (ILSTM) hidden units, to convert each tuple to a distributed representation (i.e., a vector), which can in turn be used to effectively capture similarities between tuples. We consider both the case where pre-trained word embeddings are available as well the case where they are not; we present ways to learn and tune the distributed representations that are customized for a specific ER task under different scenarios. We propose a locality sensitive hashing (LSH) based blocking approach that takes all attributes of a tuple into consideration and produces much smaller blocks, compared with traditional methods that consider only a few attributes. We evaluate our algorithms on multiple datasets (including benchmarks, biomedical data, as well as multi-lingual data) and the extensive experimental results show that DEEPER outperforms existing solutions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据