4.7 Article

Proteomics and Toxicity Analysis of Spinal-Cord Primary Cultures upon Hydrogen Sulfide Treatment

期刊

ANTIOXIDANTS
卷 7, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/antiox7070087

关键词

apoptosis; hydrogen sulfide; motor neuron; necroptosis; proteomics

资金

  1. MIUR PRIN [20158EB2CM]
  2. Catholic University of the Sacred Heart [D1.1]

向作者/读者索取更多资源

Hydrogen sulfide (H2S) is an endogenous gasotransmitter recognized as an essential body product with a dual, biphasic action. It can function as an antioxidant and a cytoprotective, but also as a poison with a high probability of causing brain damage when present at noxious levels. In a previous study, we measured toxic liquoral levels of H2S in sporadic amyotrophic lateral sclerosis (ALS) patients and in the familial ALS (fALS) mouse model, SOD1G93A. In addition, we experimentally demonstrated that H2S is extremely and selectively toxic to motor neurons, and that it is released by glial cells and increases Ca2+ concentration in motor neurons due to a lack of ATP. The presented study further examines the effect of toxic concentrations of H2S on embryonic mouse spinal-cord cultures. We performed a proteomic analysis that revealed a significant H2S-mediated activation of pathways related to oxidative stress and cell death, particularly the Nrf-2-mediated oxidative stress response and peroxiredoxins. Furthermore, we report that Na2S (a stable precursor of H2S) toxicity is, at least in part, reverted by the Bax inhibitor V5 and by necrostatin, a potent necroptosis inhibitor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据