4.8 Article

Electrochemical DNA biosensor based on proximity-dependent DNA ligation assays with DNAzyme amplification of hairpin substrate signal

期刊

BIOSENSORS & BIOELECTRONICS
卷 25, 期 11, 页码 2483-2489

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2010.04.012

关键词

DNAzyme; Electrochemical DNA biosensor; Proximity ligation

资金

  1. 973 National Basic Research Program of China [2007CB310500]
  2. NSF of China [20775023, J0830415]

向作者/读者索取更多资源

This paper describes a novel electrochemical DNA sensor for the simple, sensitive and specific detection of nucleic acids based on proximity-dependent DNA ligation assays with the DNAzyme amplification of hairpin substrate signal. A long DNA strand contains the catalytic motif of Mg2+-dependent 10-23 DNAzyme, acting as the recognition probe. When the target DNA was introduced into the system, part of it was complementary to 5'-end of the recognition probe, resulting in the ligation of a stable duplex, the unbinded part of the target DNA was acted as one binding arm for the DNAzyme. This duplex containing a complete 10-23 DNAzyme structure could cleave the purine-pyrimidine cleavage site of the hairpin substrate, which resulted in the fragmentation of the hairpin structure and the release of two single-stranded nucleic acids, one of which was biotinylated and acted as the signal probe. An immobilized thiolated capture probe could bind with the signal probe, using biotin as a tracer in the signal probe, and streptavidin-alkaline phosphatase (SA-ALP) as reporter molecule. The activity of the immobilized enzyme was voltammetrically determined by measuring the amount of 1-naphthol generated after 5 min of enzymatic dephosphorylation of 1-naphthyl phosphate. The results revealed that the sensor showed a sensitive response to complementary target sequences of H. pylori in a concentration range from 100 fM to 1 nM, with a detection limit of 50 fM. In addition, the sensing system could discriminate the complementary sequence from mismatched sequences, with high sensitivity and reusability. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据