4.8 Article

SERS detection of indirect viral DNA capture using colloidal gold and methylene blue as a Raman label

期刊

BIOSENSORS & BIOELECTRONICS
卷 25, 期 4, 页码 674-681

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2009.05.020

关键词

Surface enhanced Raman scattering; DNA; West Nile Virus; Indirect nucleic acid capture; Methylene blue; Quartz crystal microbalance-dissipation

资金

  1. Rocky Mountain Regional Center for Excellence (NIH) [U54 AI-065357-03]
  2. USDA-ARS [5410-32000-015-00D]

向作者/读者索取更多资源

An indirect capture model assay using colloidal Au nanoparticles is demonstrated for surface enhanced Raman scattering (SERS) spectroscopy detection of DNA. The sequence targeted for capture was derived from the West Nile Virus (WNV) RNA genome and selected on the basis of exhibiting minimal secondary structure formation. Upon incubation with colloidal Au, hybridization complexes containing the WNV target sequence, a complementary capture oligonucleotide conjugated to a strong tethering group and a complementary reporter oligonucleotide conjugated to methylene blue (MB), a Raman label, anchors the resultant ternary complex to Au nanoparticles and positions MB within the required sensing distance for SERS enhancement. The subsequent elicitation of surface enhanced plasmon resonance by laser excitation provides a spectral peak signature profile that is capture-specific and characteristic of the Raman spectrum for MB. Detection sensitivity is in the submicromolar range and was shown to be highest for thiol, and less so for amino, modifications at the 51 terminus of the capture oligonucleotide. Finally, using Quartz Crystal Microbalance-Dissipation as a tool for modeling ternary complex binding to Au surfaces, quantitative measurements of surface mass coverage on Au plated sensor crystals established a positive correlation between levels of ternary complex adsorption and their correspondent levels of SERS signal intensification. Adapted to a compact Raman spectrometer, which is designed for analyte detection in capillary tubes, this assay provides a rapid, mobile and cost effective alternative to expensive spectroscopic instrumentation, which is often restricted to analytical laboratories. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据