4.8 Article

Oxygen-reducing enzyme cathodes produced from SLAC, a small laccase from Streptomyces coelicolor

期刊

BIOSENSORS & BIOELECTRONICS
卷 23, 期 8, 页码 1229-1235

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2007.11.004

关键词

SLAC; laccase; biofuel cell; oxygen reduction; direct electron transfer; mediated electron transfer

向作者/读者索取更多资源

The bacterially-expressed laccase, small laccase (SLAC) of Streptomyces coelicolor, was incorporated into electrodes of both direct electron transfer (]:)ET) and mediated electron transfer (MET) designs for application in biofuel cells. Using the DET design, enzyme redox kinetics were directly observable using cyclic voltammetry, and a redox potential of 0.43 V (SHE) was observed. When mediated by an osmium redox. polymer, the oxygen-reducing cathode retained maximum activity at pH 7, producing 1.5 mA/cm(2) in a planar configuration at 900 rpm and 40 degrees C, thus outperforming enzyme electrodes produced using laccase from fungal Trametes versicolor (0.2mA/cm(2)) under similar conditions. This improvement is directly attributable to differences in the kinetics of SLAC and fungal laccases. Maximum stability of the mediated SLAC electrode was observed at pH above the enzyme's relatively high isoelectric point, where the anionic enzyme molecules could form an electrostatic adduct with the cationic mediator. Porous composite SLAC electrodes with increased surface area produced a current density of 6.25 mA/cm(2) at 0.3 V (SHE) under the above conditions. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据