4.3 Article

Quantitative assessment of environmental impact of biologics manufacturing using process mass intensity analysis

期刊

BIOTECHNOLOGY PROGRESS
卷 34, 期 6, 页码 1566-1573

出版社

WILEY
DOI: 10.1002/btpr.2702

关键词

process mass intensity; manufacturing process; environmental; sustainability; mAb

资金

  1. MRL Biologics Process Research and Development groups

向作者/读者索取更多资源

Process mass intensity (PMI) is a benchmarking metric to evaluate the efficiency of a manufacturing process, which is indicative of the environmental impact of the process. Although this metric is commonly applied for small molecule manufacturing processes, it is less commonly applied to biologics. In this study, an Excel based tool developed by the ACS GCI Pharmaceutical Roundtable was used to calculate PMI of different manufacturing processes for a monoclonal antibody (mAb). For the upstream process, three different versions were compared: fed-batch, fed-batch with N-1 perfusion, and perfusion in the N-stage bioreactor. For each upstream process version, an appropriate downstream operational mode was evaluated from the following: a column chromatography process utilizing Protein A and anion exchange (AEX) resin, a Protein A column and an AEX membrane, and a three-column periodic counter-current (3C PCC) chromatography process for Protein A and an AEX membrane. The impact of these different process variations on PMI was evaluated. Of all the process inputs, water contributes about 92-94% of the overall PMI. Additionally, the upstream processes and the chromatography steps account for 32-47 and 34-54% of the overall PMI, respectively. Sensitivity analysis was performed to identify opportunities for further reducing PMI. These data indicate that a semicontinuous manufacturing process (perfusion, 3C PCC, and AEX membrane) is the most efficient process, resulting in a 23% reduction of PMI when compared with the fed batch and two-column chromatography process. Together, PMI can be used to guide the development of efficient and environmentally sustainable mAb manufacturing processes. (c) 2018 American Institute of Chemical Engineers

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据