4.6 Article

Soil Microstructures Examined Through Transmission Electron Microscopy Reveal Soil-Microorganisms Interactions

期刊

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fenvs.2018.00106

关键词

bacteria; EPS; microhabitats; in situ localization; soil fractionation; micro-analyses; hotspots of biological activity

向作者/读者索取更多资源

Research over the last few decades has shown that the characterization of microaggregates at the micrometer scale using Transmission Electron Microscopy (TEM) provides useful information on the influence of microorganisms on soil functioning. By taking soil heterogeneity into account, TEM provides qualitative information about the state of bacteria and fungi (e.g., intact state of living organisms, spores, residues) at the sampling date within organo-mineral associations, from the soil-root interface to the bulk soil, and in biogenic structures such as casts. The degree of degradation of organic matter can be related to the visualized enzymatic potential of microorganisms that degrade them, thus indicating organic matter dynamics within soil aggregates. In addition, analytical TEM characterization of microaggregates by EELS (Electron Energy Loss Spectroscopy) or EDX (Energy Dispersive X-rays spectroscopy) provides in situ identification of microbial involvement in the biogeochemical cycles of elements. Furthermore, micrometer characterization associated with other methodologies such as Nanoscale Secondary Ion Mass Spectrometry (NanoSIMS) or soil fractionation, enables monitoring both incorporation of biodegraded litter within soil aggregates and impacts of microbial dynamics on soil aggregation, particularly due to production of extracellular polymeric substances. The present focused review suggests that such an approach using micrometer characterization of soil microhabitats provides relevant qualitative and quantitative information when monitoring and modeling microbial processes in dynamics of organo-mineral associations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据