4.2 Article

Parameter identification using fuzzy neurons: application to drones and induction motors

期刊

DYNA
卷 93, 期 1, 页码 75-81

出版社

FEDERACION ASOCIACIONES INGENIEROS INDUSTRIALES ESPANA
DOI: 10.6036/8439

关键词

parameter identification; adaptive fuzzy spiking neurons; UAV; induction motor

向作者/读者索取更多资源

Recently the use of unmanned aerial vehicles (UAV) has been extended in diverse applications. Within the most predominant configurations are rotary wing vehicles with multiple rotors. These vehicles normally present unstable dynamic behaviour in open loop, and therefore it is necessary to implement appropriate control systems. One of the most important requirements for the design of such control systems is the aerodynamic model of the multi-rotor propulsion system. On the other hand, parametric identification is widely used in the industrial context, such as control of electric machines. In particular for the case of induction motors, the knowledge of the model parameters is essential to tune the controllers properly. Among the most successful identification algorithms in recent applications are those based on neural networks. Within this context, an innovative type of neuronal networks based on adaptive fuzzy spiking neurons (AFSNs) has captured the attention of the community due to its fuzzy neuronal characteristics for unipolar and bipolar signals, such as its fuzzy learning algorithm, a sigmoidal activation function, refractory period, axonal delay, and spikes generation. This article explores for the first time the possibility of using AFSNs for the identification of the multi-rotor UAV propulsion subsystem and the parameters of the electric subsystem of an induction motor. The results show that AFSNs are capable of identifying both systems with a high degree of precision. This opens up the possibility of using AFSNs in both, experimental aerodynamics applications for UAVs and industrial control applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据