4.3 Review

Atomic Layer Deposition on Porous Materials: Problems with Conventional Approaches to Catalyst and Fuel Cell Electrode Preparation

期刊

INORGANICS
卷 6, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/inorganics6010034

关键词

atomic layer deposition; heterogeneous catalysts; SOFC; thin films; diffusion limitations; vapor-solid reaction; ceria; perovskites

资金

  1. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division [DE-FG02-13ER16380]

向作者/读者索取更多资源

Atomic layer deposition (ALD) offers exciting possibilities for controlling the structure and composition of surfaces on the atomic scale in heterogeneous catalysts and solid oxide fuel cell (SOFC) electrodes. However, while ALD procedures and equipment are well developed for applications involving flat surfaces, the conditions required for ALD in porous materials with a large surface area need to be very different. The materials (e.g., rare earths and other functional oxides) that are of interest for catalytic applications will also be different. For flat surfaces, rapid cycling, enabled by high carrier-gas flow rates, is necessary in order to rapidly grow thicker films. By contrast, ALD films in porous materials rarely need to be more than 1 nm thick. The elimination of diffusion gradients, efficient use of precursors, and ligand removal with less reactive precursors are the major factors that need to be controlled. In this review, criteria will be outlined for the successful use of ALD in porous materials. Examples of opportunities for using ALD to modify heterogeneous catalysts and SOFC electrodes will be given.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据