4.1 Review

Origami Biosystems: 3D Assembly Methods for Biomedical Applications

期刊

ADVANCED BIOSYSTEMS
卷 2, 期 12, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adbi.201800230

关键词

bio-MEMS; biosensors; drug delivery; minimally invasive surgery; robotics; self-folding

资金

  1. Fudan Fellowship Program
  2. US National Science Foundation [DMR-1709349, CMMI-1635443]
  3. Science and Technology Commission of Shanghai Municipality [17JC1401700]
  4. Changjiang Young Scholars Program of China

向作者/读者索取更多资源

Conventional assembly of biosystems has relied on bottom-up techniques, such as directed aggregation, or top-down techniques, such as layer-by-layer integration, using advanced lithographic and additive manufacturing processes. However, these methods often fail to mimic the complex three dimensional (3D) microstructure of naturally occurring biomachinery, cells, and organisms regarding assembly throughput, precision, material heterogeneity, and resolution. Pop-up, buckling, and self-folding methods, reminiscent of paper origami, allow the high-throughput assembly of static or reconfigurable biosystems of relevance to biosensors, biomicrofluidics, cell and tissue engineering, drug delivery, and minimally invasive surgery. The universal principle in these assembly methods is the engineering of intrinsic or extrinsic forces to cause local or global shape changes via bending, curving, or folding resulting in the final 3D structure. The forces can result from stresses that are engineered either during or applied externally after synthesis or fabrication. The methods facilitate the high-throughput assembly of biosystems in simultaneously micro or nanopatterned and layered geometries that can be challenging if not impossible to assemble by alternate methods. The authors classify methods based on length scale and biologically relevant applications; examples of significant advances and future challenges are highlighted.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据