4.7 Article

Stepwise graded struts for maximizing energy absorption in lattices

期刊

EXTREME MECHANICS LETTERS
卷 25, 期 -, 页码 7-15

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.eml.2018.10.006

关键词

Additive manufacturing; Architected materials; Cellular structures; Core-shell; Energy absorption

向作者/读者索取更多资源

Increasing the energy absorption capability of lightweight structures without reducing stiffness and strength has been a long-standing challenge, as numerous applications exist with potentially great impact. Particularly, in volume or weight restricted environments, such as cars, helmets or packaging, the performance, safety, cost, and environmental impact is substantially affected. However, these properties are typically found only in nature. We propose a novel architectural paradigm that adds stepwise graded core-shell struts to bending dominated lattices to increase energy absorption up to 38 times with negligible changes in density or mass, i.e., less than +2.5%. We optimize the material in each coaxial layer for maximum toughness and, enabled by multi-material 3D printing, validate the results experimentally for single struts, unit cells, and lattice structures. The bio-inspired and highly versatile architectural paradigm is scale-independent, locally tunable, applicable to different lattice cell types and geometries, and, therefore, applicable to a wide range of mechanical meta-materials and structures. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据