4.7 Article

Confocal laser scanning microscopy for rapid optical characterization of graphene

期刊

COMMUNICATIONS PHYSICS
卷 1, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s42005-018-0084-6

关键词

-

资金

  1. EC [EMPIR 2016NRM01 GRACE]
  2. EMRP [117359, CNECT-ICT-604391]
  3. NMS [119948, 121524]
  4. European Union [785219]
  5. federal grant [70NANB12H185]

向作者/读者索取更多资源

Two-dimensional (2D) materials such as graphene have become the focus of extensive research efforts in condensed matter physics. They provide opportunities for both fundamental research and applications across a wide range of industries. Ideally, characterization of graphene requires non-invasive techniques with single-atomic-layer thickness resolution and nanometer lateral resolution. Moreover, commercial application of graphene requires fast and large-area scanning capability. We demonstrate the optimized balance of image resolution and acquisition time of non-invasive confocal laser scanning microscopy (CLSM), rendering it an indispensable tool for rapid analysis of mass-produced graphene. It is powerful for analysis of 1-5 layers of exfoliated graphene on Si/Si0 2 , and allows us to distinguish the interfacial layer and 1-3 layers of epitaxial graphene on SiC substrates. Furthermore, CLSM shows excellent correlation with conventional optical microscopy, atomic force microscopy, Kelvin probe force microscopy, conductive atomic force microscopy, scanning electron microscopy and Raman mapping.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据