4.6 Article

Temperature-driven topological transition in 1T'-MoTe2

期刊

NPJ QUANTUM MATERIALS
卷 3, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41535-017-0075-y

关键词

-

资金

  1. National Science Foundation (NSF) via the Materials Research Science and Engineering Center at Columbia University [DMR 1420634, DMR-1610110]
  2. Office of Naval Research [N00014-14-1-0501]
  3. Air Force Office of Scientific Research [FA9550-16-1-0601, FA9550-16-1-0031]
  4. NSF EAGER Award [NOA-AWD1004957, ONR-N00014-14-1-0330]
  5. ARO MURI [W911NF-12-1-0461]
  6. NSF-MRSEC [DMR-1420541]
  7. Department of Energy [de-sc0016239]
  8. Simons Investigator Award
  9. Packard Foundation
  10. Schmidt Fund for Innovative Research
  11. Max Planck POSTECH/KOREA Research Initiative Program through National Foundation of Korea (NRF) - Ministry of Science, ICT and Future Planning [2016K1A4A4A01922028]
  12. Gordon and Betty Moore Foundation's EPiOS Initiative [GBMF4413]
  13. NSF MRSEC program through Columbia in the Center for Precision Assembly of Superstratic and Superatomic Solids [DMR-1420634]
  14. Center National de la Recherche Scientifique (CNRS), France
  15. Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA), France

向作者/读者索取更多资源

The topology of Weyl semimetals requires the existence of unique surface states. Surface states have been visualized in spectroscopy measurements, but their connection to the topological character of the material remains largely unexplored. 1T'-MoTe2, presents a unique opportunity to study this connection. This material undergoes a phase transition at 240 K that changes the structure from orthorhombic (putative Weyl semimetal) to monoclinic (trivial metal), while largely maintaining its bulk electronic structure. Here, we show from temperature-dependent quasiparticle interference measurements that this structural transition also acts as a topological switch for surface states in 1T'-MoTe2. At low temperature, we observe strong quasiparticle scattering, consistent with theoretical predictions and photoemission measurements for the surface states in this material. In contrast, measurements performed at room temperature show the complete absence of the scattering wavevectors associated with the trivial surface states. These distinct quasiparticle scattering behaviors show that 1T'-MoTe2 is ideal for separating topological and trivial electronic phenomena via temperature- dependent measurements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据