4.7 Article

Geometric Rotation of the Nuclear Gradient at a Conical Intersection: Extension to Complex Rotation of Diabatic States

期刊

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
卷 11, 期 7, 页码 3115-3122

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.5b00364

关键词

-

资金

  1. UK-EPSRC [EP/I032517/1]
  2. German Research Foundation (DFG) within the Cluster of Excellence in Simulation Technology [EXC 310/2]
  3. EPSRC [EP/K039946/1, EP/I032517/1] Funding Source: UKRI
  4. Engineering and Physical Sciences Research Council [EP/I032517/1, EP/K039946/1] Funding Source: researchfish

向作者/读者索取更多资源

Nonadiabatic dynamics in the vicinity of conical intersections is of essential importance in photochemistry. It is well known that if the branching space is represented in polar coordinates, then for a geometry represented by angle theta, the corresponding adiabatic states are obtained from the diabatic states with the mixing angle theta/2. In an equivalent way, one can study the relation between the real rotation of diabatic states and the resulting nuclear gradient. In this work, we extend the concept to allow a complex rotation of diabatic states to form a nonstationary superposition of electronic states. Our main result is that this leads to an elliptical transformation of the effective potential energy surfaces; i.e., the magnitude of the initial nuclear gradient changes as well as its direction. We fully explore gradient changes that result from varying both theta and phi (the complex rotation angle) as a way of electronically controlling nuclear motion, through Ehrenfest dynamics simulations for benzene cation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据