4.8 Article

Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors

期刊

BIORESOURCE TECHNOLOGY
卷 102, 期 10, 页码 5884-5890

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2011.02.048

关键词

Dicarboxylic acid; pKa; Spathaspora stipitis; Oligosaccharides; Pretreatment

资金

  1. Ministry of Education, Science and Technology [2010-0020141]
  2. National Research Foundation of Korea [핵C6B2512, 2010-0020141] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Dicarboxylic organic acids have properties that differ from those of sulfuric acid during hydrolysis of lignocellulose. To investigate the effects of different acid catalysts on the hydrolysis and degradation of biomass compounds over a range of thermochemical pretreatments, maleic, oxalic and sulfuric acids were each used at the same combined severity factor (CSF) values during hydrolysis. Xylose and glucose concentrations in hydrolysates were highest with maleic acid. Oxalic acid gave the next highest followed by sulfuric acid. This ranking was particularly true at low CSF values. The concentrations of glucose and xylose increased with oxalic and sulfuric acid pretreatments as the CSF increased, but they never attained the levels observed with maleic acid. Among sulfuric, oxalic and maleic acid treatments, the amount of xylose released as xylooligosaccharide was highest with sulfuric acid. The fraction of xylooligosaccharide was lowest with the maleic acid and the oligosaccharide fraction with oxalic acid fell in between. Furfural and hydroxymethyl furfural levels were also highest with maleic acid. In subsequent fermentations with pretreated biomass, the ethanol concentration was maximal at 19.2 g/l at CSF 1.9 when maleic acid was used as the pretreatment catalyst. This corresponded to an ethanol volumetric production rate of 0.27 g ethanol/l per h. This was the same condition showing the highest xylose production in following pretreatment with various acid catalysts. These findings suggest that maleic and oxalic dicarboxylic acids degrade hemicelluloses more efficiently than does sulfuric acid. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据