3.9 Article

Data-Driven Model Predictive Control with Regression Trees-An Application to Building Energy Management

期刊

出版社

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3127023

关键词

Machine learning; predictive control; cyber-physical systems; demand response; peak power reduction

资金

  1. Italian Government under Cipe resolution [135]
  2. INnovating City Planning through Information and Communication Technologies (INCIPICT)

向作者/读者索取更多资源

Model Predictive Control (MPC) plays an important role in optimizing operations of complex cyber-physical systems because of its ability to forecast system's behavior and act under system level constraints. However, MPC requires reasonably accurate underlying models of the system. In many applications, such as building control for energy management, Demand Response, or peak power reduction, obtaining a high-fidelity physics-based model is cost and time prohibitive, thus limiting the widespread adoption of MPC. To this end, we propose a data-driven control algorithm for MPC that relies only on the historical data. We use multioutput regression trees to represent the system's dynamics over multiple future time steps and formulate a finite receding horizon control problem that can be solved in real-time in closed-loop with the physical plant. We apply this algorithm to peak power reduction in buildings to optimally trade-off peak power reduction against thermal comfort without having to learn white/grey box models of the systems dynamics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据