4.6 Article

Thermodynamic properties of the Shastry-Sutherland model from quantum Monte Carlo simulations

期刊

PHYSICAL REVIEW B
卷 98, 期 17, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.98.174432

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG) [FOR1807, RTG 1995]
  2. Swiss National Science Foundation (SNF)
  3. European Research Council (ERC) under the EU [677061]

向作者/读者索取更多资源

We investigate the minus-sign problem that afflicts quantum Monte Carlo (QMC) simulations of frustrated quantum spin systems, focusing on spin S = 1/2, two spatial dimensions, and the extended Shastry-Sutherland model. We show that formulating the Hamiltonian in the diagonal dimer basis leads to a sign problem that becomes negligible at low temperatures for small and intermediate values of the ratio of the inter-and intradimer couplings. This is a consequence of the fact that the product state of dimer singlets is the exact ground state both of the extended Shastry-Sutherland model and of a corresponding sign-problem-free model, obtained by changing the signs of all positive off-diagonal matrix elements in the dimer basis. By exploiting this insight, we map the sign problem throughout the extended parameter space from the Shastry-Sutherland to the fully frustrated bilayer model and compare it with the phase diagram computed by tensor-network methods. We use QMC to compute with high accuracy the temperature dependence of the magnetic specific heat and susceptibility of the Shastry-Sutherland model for large systems up to a coupling ratio of 0.526(1) and down to zero temperature. For larger coupling ratios, our QMC results assist us in benchmarking the evolution of the thermodynamic properties by systematic comparison with exact diagonalization calculations and interpolated high-temperature series expansions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据