4.6 Article

Phase stability and interlayer interaction of blue phosphorene

期刊

PHYSICAL REVIEW B
卷 98, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.98.085429

关键词

-

资金

  1. Konkuk University 2014
  2. Supercomputing Center of the Korea Institute of Science and Technology Information [KSC-2016-C3-001]
  3. U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, as part of the Computational Materials Sciences Program
  4. Center for Predictive Simulation of Functional Materials
  5. U.S. Department of Energy's National Nuclear Security Administration [DE-NA0003525]

向作者/读者索取更多资源

In this work, we study the interlayer interactions between sheets of blue phosphorus with quantum Monte Carlo (QMC) methods. We find that as previously observed in black phosphorus, interlayer binding of blue phosphorus cannot be described by van der Waals (vdW) interactions alone within the density functional theory framework. Specifically, while some vdW density functionals produced reasonable binding curves, none of them could provide a correct, even qualitatively, description of charge redistribution due to interlayer binding. We also show that small systematic errors in common practice QMC calculations, such as the choice of optimized geometry and finite-size corrections, are non-negligible given the energy and length scales of this problem. We mitigate some of the major sources of error and report QMC-optimized lattice constant, stacking, and interlayer binding energy for blue phosphorus. It is strongly suggested that these considerations are important and quite general in the modeling of two-dimensional phosphorus allotropes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据