4.8 Article

Electrospun Silk Fibroin Nanofibrous Scaffolds with Two-Stage Hydroxyapatite Functionalization for Enhancing the Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 10, 期 9, 页码 7614-7625

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.7b03328

关键词

electrospun silk fibroin scaffolds; hydroxyapatite particles; polydopamine; human adipose-derived mesenchymal stem cells; osteogenesis

资金

  1. Translational Research Center for Protein Function Control (TRCP) - Ministry of Science, ICT and Future Planning, Republic of Korea [2016R1A5A1004694]
  2. Yonsei University Future Leading Research Initiative [2016-22-0102]
  3. Institute for Basic Science [IBS-R026-D1]

向作者/读者索取更多资源

The development of functional scaffolds with improved osteogenic potential is important for successful bone formation and mineralization in bone tissue engineering. In this study, we developed a functional electrospun silk fibroin (SF) nanofibrous scaffold functionalized with two-stage hydroxyapatite (HAp) particles, using mussel adhesive-inspired polydopamine (PDA) chemistry. HAp particles were first incorporated into SF scaffolds during the electrospinning process, and then immobilized onto the electrospun SF nanofibrous scaffolds containing HAp via PDA-mediated adhesive chemistry. We obtained two-stage HAp-functionalized SF nanofibrous scaffolds with improved mechanical properties and capable of providing a bone-specific physiological microenvironment. The developed scaffolds were tested for their ability to enhance the osteogenic differentiation of human adipose-derived mesenchymal stem cells (hADMSCs) in vitro and repair bone defect in vivo. To boost their ability for bone repair, we genetically modified hADMSCs with the transcriptional coactivator with PDZ-binding motif (TAZ) via polymer nanoparticle-mediated gene delivery. TAZ is a well-known transcriptional modulator that activates the osteogenic differentiation of mesenchymal stem cells (MSCs). Two-stage HAp-functionalized SF scaffolds significantly promoted the osteogenic differentiation of TAZ-transfected hADMSCs in vitro and enhanced mineralized bone formation in a critical-sized calvarial bone defect model. Our study shows the potential utility of SF scaffolds with nanofibrous structures and enriched inorganic components in bone tissue engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据