4.8 Article

Porous Au@Pt Nanoparticles: Therapeutic Platform for Tumor Chemo-Photothermal Co-Therapy and Alleviating Doxorubicin-Induced Oxidative Damage

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 10, 期 1, 页码 150-164

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.7b14705

关键词

Au@Pt nanoparticles; porous structure; combinational therapy; ROS scavenger; oxidative stress

资金

  1. National Natural Science Fund for Distinguished Young Scholar [NSFC31525009]
  2. National Natural Science Funds [NSFC31600811, 31771096, NSFC31500809]
  3. Application Fundamental Research Foundation of Sichuan Province Science and Technology Department, China [2016JY0157]
  4. Scientific Research Foundation of the Education Department of Sichuan Province, China [15ZA0256]
  5. Scientific Research Foundation of the Health and Family Planning Commission of Sichuan Province, China [17PJ556]

向作者/读者索取更多资源

Nanoparticle-based systems explore not only the delivery efficacy of drugs or contrast agents, but also additional capabilities like reducing the systemic toxicity, especially during cancer chemotherapy. Since some of the noble metal nanoparticles exhibit the catalysis properties which can scavenge the reactive oxygen species (ROS), they can be used as a promising drug delivery platform for reducing the oxidative stress damage in normal tissues caused by some chemotherapy drugs. Herein, in this study, we construct porous Au@Pt nanoparticles and further explore the properties of porous Au@Pt nanoparticles in relieving the oxidative stress damage as well as in tumor growth inhibition by chemo-photothermal co-therapy. The tunable surface pore structure of Au@Pt nanoparticle provides space for Doxorubicin (DOX) loading. cRGD peptide modification enable the DOX-loaded Au@Pt nanoparticles to improve drug delivery properties. The constructed nanocarrier (DOX/Au@Pt-cRGD) shows controlled drug release behavior. Meanwhile, the absorbance peak of the Au@Pt structure in the near-infrared (NIR) portion provides the capacity for in vivo photoacoustic imaging and the high photoconversion efficiency, which make AugPt nanoparticle a suitable carrier for photothermal therapy (PTT). Combined with chemotherapy, the nanosystem DOX/Au@Pt-cRGD shows enhanced anticancer therapeutic effects. More importantly, ROS-scavenging activity of Au@Pt alleviates the DOX-induced oxidative stress damage, especially the cardiomyopathy during chemotherapy. Herein, this nanosystem DOX/Au@Pt-cRGD could be explored as reactive oxygen scavenger and drug delivery system for side effects relieving chemo-photothermal combinational therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据