4.2 Article

Design of Metal-Binding Sites Onto Self-Assembled Peptide Fibrils

期刊

BIOPOLYMERS
卷 92, 期 3, 页码 164-172

出版社

WILEY
DOI: 10.1002/bip.21163

关键词

peptides; self-assembly; protein design; nanowires; biological materials

资金

  1. European Union (STREP) [NMP4-CT-2006-033256]
  2. EPSRC
  3. EU NMI3

向作者/读者索取更多资源

The ability to develop a rational basis for the binding of inorganic materials to specific binding sites within self-assembling biological scaffolds has important applications in nanobiotechnology. Amyloid-forming peptides are a class of such scaffolds and show enormous potential as templates for the fabrication of low resistance, conducting nanowires. Here we report the use Of a self-assembling peptide building block as scaffold for the systematic introduction of metal-binding residues at specific locations within the structure. The octapeptide NSGAITIG (Asparagine-Serine-Glycine-Alanine-Isoleucine-Threonine-Isoleucine-Glycine) from the fiber protein of adenovirus has been identified in previous structural studies as an elementary fibril-forming building block. Using this building block as a scaffold, we have designed three new cysteine-containing octa-peptides to study their eventual fibril-forming ability and potential templating of metal nanoparticles. We find that the cysteine substitutions do not alter the fibril-forming potential of the peptides, and that the fibrils formed bind efficiently to silver, gold, and platinum nanoparticles; furthermore, we report unexpected behavior of serine in nucleating gold and platinum nanoparticles. We find that combination of cysteine and serine residues projecting from adjacent sites oil a peptide scaffold represents a potentially useful strategy in nucleating inorganic materials. The ability to reliably produce metal-coated fibrils is a vital first step towards the exploitation of these fibrils as conducting nanowires with applications in nano-circuitry. Short, biologically inspired self-assembling peptide scaffolds derived from natural fibrous proteins with known three-dimensional structure may provide a viable approach towards the rational design of inorganic nanowires. (C) 2009 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 92: 164-172, 2009.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据