4.6 Article

Reactive messengers for digital molecular communication with variable transmitter-receiver distance

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 20, 期 48, 页码 30312-30320

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8cp05643a

关键词

-

资金

  1. University of Catania
  2. MIUR

向作者/读者索取更多资源

Molecular communication exploits functional molecular systems travelling along fluid media to deliver messages encoded as concentration pulses, e.g. molecular bits. As the bits are naturally broadened by diffusion, limiting the distance along which information can be transferred, by careful design and optimization of the molecular messengers, is required. A new paradigm, exploiting the chemical reactivity of a suitable molecular messenger, has been developed to achieve long range information transfer with variable transmitter-receiver distances. The experimental results and theoretical simulations, carried out by using fluorescent molecules switched by pH-driven hydrolysis, are reported here. In particular, we simulated the information transport process by using numerical solutions of differential equations governing information swapping and we show that by exploiting the reactivity of the chemical messenger, a stable signal at the receiver is maintained within a wide range of distance. This theoretical prediction was fully experimentally verified by using a prototypal molecular communication platform.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据