4.6 Article

Remarkable pressure-induced emission enhancement based on intermolecular charge transfer in halogen bond-driven dual-component co-crystals

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 20, 期 48, 页码 30297-30303

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8cp06363j

关键词

-

资金

  1. National Natural Science Foundation of China [NSFC 21573092, 21573087]

向作者/读者索取更多资源

A series of two-component co-crystals driven by IN interactions based on the bipyridine (BIPY) chromophore with one among three different co-former building blocks, iodopentafluorobenzene (IPFB), 1,4-diiodotetrafluorobenzene (DITFB) and 1,3,5-trifluoro-2,4,6-triiodobenzene (IFB), were prepared and analysed via infared spectroscopy and single-crystal X-ray diffraction. By comparing the IN distances in the co-crystal structures, we found that the higher the -F ratio in the building blocks the closer the contact of the IN bond, enhancing the intermolecular interactions in these co-crystals as well. That is, the positive electrostatic potential on the iodine atom(s) in the co-formers was enhanced by the presence of strong electron-withdrawing groups. The distinct spectroscopic behaviours (fluorescence and Raman spectra) among the two-component BIPY co-crystal systems in response to hydrostatic pressure were also investigated. Interestingly, the fluorescence of BIPY-DITFB presented intriguing abnormal evolution from dark to bright, suggesting a new charge transfer state due to the decreased intermolecular distance and the enhanced IN interactions. Theoretical simulations by Materials Studio also showed the shortened IN distance and the increased angle of C-IN, evidencing the enhanced IN interactions. In contrast, BIPY-IFB showed only slightly enhanced fluorescence intensity at 550 nm consistent with BIPY-DITFB. Once the pressure was relieved, both the Raman and fluorescence spectra for BIPY co-crystal systems entirely self-recovered. Remarkable emission enhancement in a solid-state co-crystal has been rarely reported in previous publications and in fact, this study paves a unique way for designing and developing novel stimuli-responsive photo-functional materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据