4.5 Article

Acoustic Compressibility of Caenorhabditis elegans

期刊

BIOPHYSICAL JOURNAL
卷 115, 期 9, 页码 1817-1825

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2018.08.048

关键词

-

资金

  1. National Institutes of Health Office of Research Infrastructure Programs [P40 OD0104400]

向作者/读者索取更多资源

The acoustic compressibility of Caenorhabditis elegans is a necessary parameter for further understanding the underlying physics of acoustic manipulation techniques of this widely used model organism in biological sciences. In this work, numerical simulations were combined with experimental trajectory velocimetry of L1 C. elegans larvae to estimate the acoustic compressibility of C. elegans. A method based on bulk acoustic wave acoustophoresis was used for trajectory velocimetry experiments in a microfluidic channel. The model-based data analysis took into account the different sizes and shapes of L1 C. elegans larvae (255 +/- 26 mu m in length and 15 +/- 2 mu m in diameter). Moreover, the top and bottom walls of the microfluidic channel were considered in the hydrodynamic drag coefficient calculations, for both the C. elegans and the calibration particles. The hydrodynamic interaction between the specimen and the channel walls was further minimized by acoustically levitating the C. elegans and the particles to the middle of the measurement channel. Our data suggest an acoustic compressibility K-Ce of 430 TPa-1 with an uncertainty range of +/- 20 TPa-1 for C. elegans, a much lower value than what was previously reported for adult C. elegans using static methods. Our estimated compressibility is consistent with the relative volume fraction of lipids and proteins that would mainly make up for the body of C. elegans. This work is a departing point for practical engineering and design criteria for integrated acoustofluidic devices for biological applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据