4.7 Article

Planck 2015 Constraints on the Non-flat XCDM Inflation Model

期刊

ASTROPHYSICAL JOURNAL
卷 869, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.3847/1538-4357/aaec6f

关键词

cosmic background radiation; cosmological parameters; inflation; large-scale structure of universe; observations

资金

  1. JSPS [16J05446, 15H05890]
  2. DOE [DE-SC0019038]

向作者/读者索取更多资源

We examine the Planck 2015 cosmic microwave background (CMB) anisotropy data by using a physically consistent energy density inhomogeneity power spectrum generated by quantum-mechanical fluctuations during an early epoch of inflation in the non-flat XCDM model. Here dark energy is parameterized using a fluid with a negative equation of state parameter but with the speed of fluid acoustic inhomogeneities set to the speed of light. We find that the Planck 2015 data in conjunction with baryon acoustic oscillation distance measurements are reasonably well fit by a closed-XCDM model in which spatial curvature contributes a percent of the current cosmological energy density budget. In this model, the measured non-relativistic matter density parameter and Hubble constant are in good agreement with values determined using most other data. Depending on cosmological parameter values, the closed-XCDM model has reduced power, relative to the tilted, spatially flat Lambda CDM case, and can partially alleviate the low multipole CMB temperature anisotropy deficit and can help partially reconcile the CMB anisotropy and weak lensing sigma(8) constraints, at the expense of somewhat worsening the fit to higher multipole CMB temperature anisotropy data. However, the closed-XCDM inflation model does not seem to improve the agreement much, if at all, compared to the closed Lambda CDM inflation case, even though it has one additional free parameter.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据