4.5 Article

Theoretical Analysis of Membrane Tension in Moving Cells

期刊

BIOPHYSICAL JOURNAL
卷 106, 期 1, 页码 84-92

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2013.11.009

关键词

-

资金

  1. Israel Science Foundation [758/11]
  2. Marie Curie network
  3. European Research Council

向作者/读者索取更多资源

Lateral tension in cell plasma membranes plays an essential role in regulation of a number of membrane- related intracellular processes and cell motion. Understanding the physical factors generating the lateral tension and quantitative determination of the tension distribution along the cell membrane is an emerging topic of cell biophysics. Although experimental data are accumulating on membrane tension values in several cell types, the tension distribution along the membranes of moving cells remains largely unexplored. Here we suggest and analyze a theoretical model predicting the tension distribution along the membrane of a cell crawling on a flat substrate. We consider the tension to be generated by the force of actin network polymerization against the membrane at the cell leading edge. The three major factors determining the tension distribution are the membrane interaction with anchors connecting the actin network to the lipid bilayer, the membrane interaction with cell adhesions, and the force developing at the rear boundary due to the detachment of the remaining cell adhesion from the substrate in the course of cell crawling. Our model recovers the experimentally measured values of the tension in fish keratocytes and their dependence on the number of adhesions. The model predicts, quantitatively, the tension distribution between the leading and rear membrane edges as a function of the area fractions of the anchors and the adhesions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据