4.7 Article

Combination of searches for heavy resonances decaying into bosonic and leptonic final states using 36 fb(-1) of proton-proton collision data at root s=13 TeV with the ATLAS detector

期刊

PHYSICAL REVIEW D
卷 98, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.98.052008

关键词

-

资金

  1. ANPCyT, Argentina
  2. YerPhI
  3. Armenia
  4. ARC, Australia
  5. BMWFVV, Austria
  6. FWF, Austria
  7. ANAS, Azerbaijan
  8. SSTC, Belarus
  9. CNPq, Brazil
  10. FAPESP, Brazil
  11. NSERC, Canada
  12. NRC, Canada
  13. CFI, Canada
  14. CERN
  15. CONICYT, Chile
  16. CAS, China
  17. MOST, China
  18. NSFC, China
  19. COLCIENCIAS, Colombia
  20. MSMT CR, Czech Republic
  21. MPO CR, Czech Republic
  22. VSC CR, Czech Republic
  23. DNRF, Denmark
  24. DNSRC, Denmark
  25. IN2P3-CNRS, France
  26. CEA-DRF/IRFU, France
  27. SRNSFG, Georgia
  28. BMBF, Germany
  29. HGF, Germany
  30. MPG, Germany
  31. GSRT, Greece
  32. RGC, Hong Kong, China
  33. ISF, Israel
  34. I-CORE, Israel
  35. Benoziyo Center, Israel
  36. INFN, Italy
  37. MEXT, Japan
  38. JSPS, Japan
  39. CNRST, Morocco
  40. NWO, Netherlands
  41. RCN, Norway
  42. MNiSW, Poland
  43. NCN, Poland
  44. FCT, Portugal
  45. MNE/IFA, Romania
  46. MES of Russia, Russian Federation
  47. NRC KI, Russian Federation
  48. JINR
  49. MESTD, Serbia
  50. MSSR, Slovakia
  51. ARRS, Slovenia
  52. MIZS, Slovenia
  53. DST/NRF, South Africa
  54. MINECO, Spain
  55. SRC, Sweden
  56. Wallenberg Foundation, Sweden
  57. SERI, Switzerland
  58. SNSF, Switzerland
  59. Canton of Bern, Switzerland
  60. Canton of Geneva, Switzerland
  61. MOST, Taiwan
  62. TAEK, Turkey
  63. STFC, United Kingdom
  64. DOE, U.S.
  65. NSF, U.S.
  66. BCKDF, Canada
  67. Canada Council, Canada
  68. CANARIE, Canada
  69. CRC, Canada
  70. Compute Canada, Canada
  71. FQRNT, Canada
  72. Ontario Innovation Trust, Canada
  73. EPLANET, European Union
  74. ERC, European Union
  75. ERDF, European Union
  76. FP7, European Union
  77. Horizon 2020, European Union
  78. Marie Sklodowska-Curie Actions, European Union
  79. Investissements d'Avenir Labex and Idex, France
  80. ANR, France
  81. Region Auvergne, France
  82. Fondation Partager le Savoir, France
  83. DFG, Germany
  84. AvH Foundation, Germany
  85. Herakleitos
  86. Tholes
  87. Aristeia programs - EU-ESF
  88. Greek NSRF
  89. BSF, Israel
  90. GIF, Israel
  91. Minerva, Israel
  92. BRF, Norway
  93. CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain
  94. Royal Society
  95. United Kingdom
  96. Leverhulme Trust
  97. United Kingdom
  98. STFC [ST/N000447/1, ST/L003449/1, ST/H001158/2, ST/N000277/1, ST/J004804/1, ST/N000234/1, ST/N000307/1, ST/L006162/1, ST/M000753/1, ST/J005533/1, ST/N000420/1, ST/P002439/1] Funding Source: UKRI
  99. Direct For Mathematical & Physical Scien [1624739] Funding Source: National Science Foundation

向作者/读者索取更多资源

Searches for new heavy resonances decaying into different pairings of W, Z, or Higgs bosons, as well as dirffiffiffiectly into leptons, are presented using a data sample corresponding to 36.1 fb(-1) of pp collisions at root s = 13 TeV collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting bosonic decay modes in the qqqq, vvqq, evqq, eeqq, evev, eevv, evee, eeee, qqbb, vvbb, evbb, and eebb final states are combined, searching for a narrow-width resonance. Likewise, analyses selecting the leptonic ev and ee final states are also combined. These two sets of analyses are then further combined. No significant deviation from the Standard Model predictions is observed. Three benchmark models are tested: a model predicting the existence of a new heavy scalar singlet, a simplified model predicting a heavy vector-boson triplet, and a bulk Randall-Sundrum model with a heavy spin-2 Kaluza-Klein excitation of the graviton. Cross section limits are set at the 95% confidence level using an asymptotic approximation and are compared with predictions for the benchmark models. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The data exclude a heavy vector-boson triplet with mass below 5.5 TeV in a weakly coupled scenario and 4.5 TeV in a strongly coupled scenario, as well as a Kaluza-Klein graviton with mass below 2.3 TeV.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据