4.5 Article

The Structure of Misfolded Amyloidogenic Dimers: Computational Analysis of Force Spectroscopy Data

期刊

BIOPHYSICAL JOURNAL
卷 107, 期 12, 页码 2894-2901

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2014.10.053

关键词

-

资金

  1. National Institutes of Health [5R01 GM096039-04]
  2. National Science Foundation [EPS-1004094]

向作者/读者索取更多资源

Progress in understanding the molecular mechanism of self-assembly of amyloidogenic proteins and peptides requires knowledge about their structure in misfolded states. Structural studies of amyloid aggregates formed during the early aggregation stage are very limited. Atomic force microscopy (AFM) spectroscopy is widely used to analyze misfolded proteins and peptides, but the structural characterization of transiently formed misfolded dimers is limited by the lack of computational approaches that allow direct comparison with AFM experiments. Steered molecular dynamics (SMD) simulation is capable of modeling force spectroscopy experiments, but the modeling requires pulling rates 10(7) times higher than those used in AFM experiments. In this study, we describe a computational all-atom Monte Carlo pulling (MCP) approach that enables us to model results at pulling rates comparable to those used in AFM pulling experiments. We tested the approach by modeling pulling experimental data for I91 from titin I-band (PDB ID: 1TIT) and ubiquitin (PDB ID: 1UBQ). We then used MCP to analyze AFM spectroscopy experiments that probed the interaction of the peptides [Q6C] Sup35 (6-13) and [H13C] A beta (13-23). A comparison of experimental results with the computational data for the Sup35 dimer with out-of-register and in-register arrangements of beta-sheets suggests that Sup35 monomers adopt an out-of-register arrangement in the dimer. A similar analysis performed for A beta peptide demonstrates that the out-of-register antiparallel beta-sheet arrangement of monomers also occurs in this peptide. Although the rupture of hydrogen bonds is the major contributor to dimer dissociation, the aromatic-aromatic interaction also contributes to the dimer rupture process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据