4.7 Article

Search for top squarks and dark matter particles in opposite-charge dilepton final states at root s=13 TeV

期刊

PHYSICAL REVIEW D
卷 97, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.97.032009

关键词

-

资金

  1. BMWFW (Austria)
  2. FWF (Austria)
  3. FNRS (Belgium)
  4. FWO (Belgium)
  5. CNPq (Brazil)
  6. CAPES (Brazil)
  7. FAPERJ (Brazil)
  8. FAPESP (Brazil)
  9. MES (Bulgaria)
  10. CERN (China)
  11. CAS (China)
  12. MoST (China)
  13. NSFC (China)
  14. COLCIENCIAS (Colombia)
  15. MSES (Croatia)
  16. CSF (Croatia)
  17. RPF (Cyprus)
  18. SENESCYT (Ecuador)
  19. MoER (Estonia)
  20. ERC IUT (Estonia)
  21. ERDF (Estonia)
  22. Academy of Finland (Finland)
  23. MEC (Finland)
  24. HIP (Finland)
  25. CEA (France)
  26. CNRS/IN2P3 (France)
  27. BMBF (Germany)
  28. DFG (Germany)
  29. HGF (Germany)
  30. GSRT (Greece)
  31. OTKA (Hungary)
  32. NIH (Hungary)
  33. DAE (India)
  34. DST (India)
  35. IPM (Iran)
  36. SFI (Ireland)
  37. INFN (Italy)
  38. MSIP (Republic of Korea)
  39. NRF (Republic of Korea)
  40. LAS (Lithuania)
  41. MOE (Malaysia)
  42. UM (Malaysia)
  43. BUAP (Mexico)
  44. CINVESTAV (Mexico)
  45. CONACYT (Mexico)
  46. LNS (Mexico)
  47. SEP (Mexico)
  48. UASLP-FAI (Mexico)
  49. MBIE (New Zealand)
  50. PAEC (Pakistan)
  51. MSHE (Poland)
  52. NSC (Poland)
  53. FCT (Portugal)
  54. JINR (Dubna)
  55. MON (Russia)
  56. RosAtom (Russia)
  57. RAS (Russia)
  58. RFBR (Russia)
  59. RAEP (Russia)
  60. MESTD (Serbia)
  61. SEIDI (Spain)
  62. CPAN (Spain)
  63. PCTI (Spain)
  64. FEDER (Spain)
  65. Swiss Funding Agencies (Switzerland)
  66. MST (Taipei)
  67. ThEPCenter (Thailand)
  68. IPST (Thailand)
  69. STAR (Thailland)
  70. NSTDA (Thailand)
  71. TUBITAK (Turkey)
  72. TAEK (Turkey)
  73. NASU (Ukraine)
  74. SFFR (Ukraine)
  75. STFC (U.K.)
  76. DOE (U.S.)
  77. NSF (U.S.)
  78. Marie-Curie program
  79. European Research Council
  80. Horizon 2020 Grant [675440]
  81. Leventis Foundation
  82. A. P. Sloan Foundation
  83. Alexander von Humboldt Foundation
  84. Belgian Federal Science Policy Office
  85. Fonds pour la Formation 'a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium)
  86. Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium)
  87. Ministry of Education, Youth and Sports (MEYS) of the Czech Republic
  88. Council of Science and Industrial Research, India
  89. HOMING PLUS program of the Foundation for Polish Science
  90. European Union
  91. Regional Development Fund
  92. Mobility Plus program of the Ministry of Science and Higher Education
  93. National Science Center (Poland) [Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406]
  94. National Priorities Research Program by Qatar National Research Fund
  95. Programa Severo Ochoa del Principado de Asturias
  96. Thalis program - EU-ESF
  97. Aristeia program - EU-ESF
  98. Greek NSRF
  99. Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University
  100. Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand)
  101. Welch Foundation [C-1845]
  102. Weston Havens Foundation (U.S.)
  103. Direct For Mathematical & Physical Scien [1151640, 1506130, 1508869, 1506168] Funding Source: National Science Foundation
  104. Division Of Physics [1606321] Funding Source: National Science Foundation
  105. STFC [1708249, ST/N000242/1, 1707996] Funding Source: UKRI

向作者/读者索取更多资源

A search for new physics is presented in final states with two oppositely charged leptons (electrons or muons), jets identified as originating from b quarks, and missing transverse momentum (p(T)(miss)). The search uses proton-proton collision data at root s = 13 TeV amounting to 35.9 fb(-1) of integrated luminosity collected using the CMS detector in 2016. Hypothetical signal events are efficiently separated from the dominant t (t) over bar background with requirements on p(T)(miss) and transverse-mass variables. No significant deviation is observed from the expected background. Exclusion limits are set in the context of simplified supersymmetric models with pair-produced top squarks. For top squarks, decaying exclusively to a top quark and a neutralino, exclusion limits are placed at 95% confidence level on the mass of the lightest top squark up to 800 GeVand on the lightest neutralino up to 360 GeV. These results, combined with searches in the single-lepton and all-jet final states, raise the exclusion limits up to 1050 GeV for the lightest top squark and up to 500 GeV for the lightest neutralino. For top squarks undergoing a cascade decay through charginos and sleptons, the mass limits reach up to 1300 GeV for top squarks and up to 800 GeV for the lightest neutralino. The results are also interpreted in a simplified model with a dark matter (DM) particle coupled to the top quark through a scalar or pseudoscalar mediator. For light DM, mediator masses up to 100 (50) GeV are excluded for scalar (pseudoscalar) mediators. The result for the scalar mediator achieves some of the most stringent limits to date in this model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据