4.8 Article

Tuning coiled coil stability with histidine-metal coordination

期刊

NANOSCALE
卷 10, 期 48, 页码 22725-22729

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8nr07259k

关键词

-

资金

  1. Max Planck Society
  2. International Max Planck Research School (IMPRS) on Multiscale Bio-Systems
  3. Alexander von Humboldt Foundation

向作者/读者索取更多资源

Coiled coils (CCs) have emerged as versatile building blocks for the synthesis of nanostructures, drug delivery systems and biomimetic hydrogels. Bioengineering metal coordination sites into the terminal ends of a synthetic coiled coil (CC), we generate a nanoscale biological building block with tunable stability. The reversible coordination of Ni2+ thermodynamically stabilizes the CC, as shown with circular dichroism spectroscopy. Using atomic force microscopy-based single-molecule force spectroscopy, it is further shown that Ni2+-binding reinforces the CC mechanically, increasing the barrier height for dissociation. When used as a dynamic crosslink in polyethyleneglycol-based hydrogels, the single-molecule stability of the CC is directly transferred to the bulk material and determines its viscoelastic properties. This reversibly tunable CC, thus, highlights an effective strategy for rationally engineering the single-molecule properties of biomolecular building blocks, which can be translated to the emergent properties of biomimetic materials, as well as other CC containing molecular assemblies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据