4.6 Article

Internally extended growth of core-shell NH2-MIL-101(Al)@ZIF-8 nanoflowers for the simultaneous detection and removal of Cu(II)

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 6, 期 42, 页码 21029-21038

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ta07349j

关键词

-

资金

  1. National Science Foundation of China [21675127]
  2. Postdoctoral Innovation Talents Support Program [BX20180263]
  3. Shaanxi Provincial Science Fund for Distinguished Young Scholars [2018JC-011]

向作者/读者索取更多资源

The excessive accumulation of toxic copper species makes it imperative to develop smart dual-functional materials for the simultaneous removal and detection of Cu(II) in drinking water. In this work, novel core-shell NH2-MIL-101(Al)@ZIF-8 nanoflowers were successfully fabricated via an internal extended growth mode under the regulation of polyvinylpyrrolidone (PVP) to achieve this goal. Benefiting from the specific affinity of imidazole nitrogen in ZIF-8 toward Cu(II), the resultant NH2-MIL-101(Al)@ZIF-8 shows high adsorption capacity (526.74 mg g(-1)). Moreover, the fluorescence of NH2-MIL-101(Al) shows a Cu(II)-dependent change, causing this composite to possess superior selective/sensitive detection with a broad linear range (1.5-625 mM) and a low detection limit (0.17 mM) for Cu(II). Specifically, the hybrid MOF@MOF structure provides greater sensitivity as compared to the individual constituent (pristine NH2-MIL-101(Al)) and the mixed state, which is ascribed to the rational optimization of the smart adsorbent based on the following two aspects. (i) The synergistic effect of the core-shell nanostructure improves the preconcentration ability at the interface between single MOFs. (ii) The existence of the three-dimensional hierarchical nanoflower architecture (structure optimization) accelerates the mass transport and sculpts the final composite with enhanced adsorption and detection ability. These indicate that the smart NH2-MIL-101(Al)@ZIF-8 nanoflower could be an excellent candidate for the synchronous remediation and selective detection of Cu(II) in aqueous systems, which could be potentially useful in wastewater treatment and water quality monitoring.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据