4.6 Article

Sharkskin- mimetic desalination membranes with ultralow biofouling

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 6, 期 45, 页码 23034-23045

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ta06125d

关键词

-

资金

  1. Samsung Research Funding Center of Samsung Electronics [SRFC-MA1602-06]

向作者/读者索取更多资源

Biofouling is a pervasive problem for any materials that are exposed to aquatic environments. Especially, it is a dire problem for the desalination membranes used to sustainably supply clean water, necessitating development of the methods to mitigate membrane biofouling. We present a topological modification approach to achieve ultralow fouling of water desalination membranes by realizing the sharkskin-mimetic (Sharklet) surface patterns and identify their unique antifouling mechanism based on computational fluid dynamics simulation. Our approach relies on a newly developed layered interfacial polymerization that can produce a conformal selective layer on patterned porous supports prepared by phase separation micromolding. The Sharklet-patterned membrane exhibited remarkably low biofouling compared to the conventional membranes with irregular roughness and topologically modulated membranes with simple patterns. Its superior biofouling resistance is attributed to the unique Sharklet geometry that can significantly inhibit biofilm growth. Furthermore, under dynamic flow conditions, the intricate Sharklet geometry induces a complex surface flow by symmetrically generating a secondary flow perpendicular to the primary flow, forming a periodic inflow and outflow along the pattern. The reinforced primary and secondary flows of the Sharklet pattern may further contribute to its excellent biofouling resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据