4.8 Article

Effect of substrate orientation on local magnetoelectric coupling in bi-layered multiferroic thin films

期刊

NANOSCALE
卷 10, 期 44, 页码 20618-20627

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8nr06041j

关键词

-

资金

  1. DFG Forschergruppe 1509 Ferroic Functional Materials [Lu729/12, We2623/13]

向作者/读者索取更多资源

In this study we explore the prospect of strain-mediated magnetoelectric coupling in CoFe2O4-BaTiO3 bi-layers as a function of different interfacial boundary conditions. Pulsed laser deposition fabricated thin films on Nb:SrTiO3(100) and Nb:SrTiO3(111) single crystal substrates were characterized in terms of their peculiarities related to the structure-property relationship. Despite the homogeneous phase formation in both films, transmission electron microscopy showed that the bi-layers on Nb:SrTiO3(100) exhibit a higher number of crystallographic defects when compared to the films on Nb:SrTiO3(111). This signifies an intrinsic relationship of the defects and the substrate orientation. To analyze the consequences of these defects on the overall magnetoelectric coupling of the bi-layered films, piezoresponse force microscopy was performed in situ with an applied magnetic field. The local magnetic field dependence of the piezoresponse was obtained using principal component analysis. A detailed analysis of this dependence led to a conclusion that the bi-layers on Nb:SrTiO3(111) exhibit better strain-transfer characteristics between the magnetic and the piezoelectric layer than those which were deposited on Nb:SrTiO3(100). These strain transfer characteristics correlate well with the interface quality and the defect concentration. This study suggests that in terms of overall magnetoelectric coupling, the Nb:SrTiO3(111) grown bi-layers are expected to outperform their Nb:SrTiO3(100) grown counterparts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据