4.7 Article

Path integral approach to random neural networks

期刊

PHYSICAL REVIEW E
卷 98, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.98.062120

关键词

-

资金

  1. Gatsby Charitable Foundation
  2. NIH

向作者/读者索取更多资源

In this work we study of the dynamics of large-size random neural networks. Different methods have been developed to analyze their behavior, and most of them rely on heuristic methods based on Gaussian assumptions regarding the fluctuations in the limit of infinite sizes. These approaches, however, do not justify the underlying assumptions systematically. Furthermore, they are incapable of deriving in general the stability of the derived mean-field equations, and they are not amenable to analysis of finite-size corrections. Here we present a systematic method based on path integrals which overcomes these limitations. We apply the method to a large nonlinear rate-based neural network with random asymmetric connectivity matrix. We derive the dynamic mean field (DMF) equations for the system and the Lyapunov exponent of the system. Although the main results are well known, here we present the detailed calculation of the spectrum of fluctuations around the mean-field equations from which we derive the general stability conditions for the DMF states. The methods presented here can be applied to neural networks with more complex dynamics and architectures. In addition, the theory can be used to compute systematic finite-size corrections to the mean-field equations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据