4.6 Article

Melamine formaldehyde-metal organic gel interpenetrating polymer network derived intrinsic Fe-N-doped porous graphitic carbon electrocatalysts for oxygen reduction reaction

期刊

NEW JOURNAL OF CHEMISTRY
卷 42, 期 23, 页码 18690-18701

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8nj03170c

关键词

-

资金

  1. Council of Scientific and Industrial Research (CSIR), New Delhi, India

向作者/读者索取更多资源

Fe, N doped porous graphitic carbon electrocatalyst (Fe-MOG-MF-C), obtained by pyrolysis of an Interpenetrating Polymer Network (IPN) comprised of melamine formaldehyde (MF as hard segment) and Metal-Organic Gel (MOG as soft segment), exhibited significant Oxygen Reduction Reaction (ORR) activity in alkaline medium. BET surface area analysis of Fe-MOG-MF-C showed high surface area (821 m(2) g(-1)), while TEM, Raman and XPS results confirmed Fe and N co-doping. Furthermore, a modulated porous morphology with a higher degree of surface area (950 m(2) g(-1)) has been accomplished for the system (Fe-MOG-MFN-C) when aided by a sublimable porogen, such as naphthalene. XPS results further demonstrated that these systems exhibited a better degree of distribution of graphitic N and an onset potential value of 0.91 V vs. RHE in 0.1 M KOH solution following an efficient four-electron ORR pathway. The electrocatalytic activity of Fe-MOG-MFN-C is superior to that of Fe-MOG-MF-C by virtue of its higher graphitic N content and surface area. Thus, the study presents a new class of IPN derived MF-MOG nanocomposites with the potential to generate extended versions of in situ Fe-N doped porous graphitic carbon structures with superior ORR activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据