4.5 Article

Induction of Peptide Bond Dipoles Drives Cooperative Helix Formation in the (AAQAA)3 Peptide

期刊

BIOPHYSICAL JOURNAL
卷 107, 期 4, 页码 991-997

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2014.06.038

关键词

-

资金

  1. NIH [GM051501, GM072558]
  2. National Science Foundation [OCI-1053575]
  3. SNSF Fellowship [PBBSP2_144301]
  4. Direct For Computer & Info Scie & Enginr
  5. Office of Advanced Cyberinfrastructure (OAC) [0910847] Funding Source: National Science Foundation
  6. Swiss National Science Foundation (SNF) [PBBSP2_144301] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

Cooperativity is a central feature in the formation of secondary structures in proteins. However, the driving forces behind this cooperativity are poorly understood. The present work shows that the cooperativity of helix formation in the acetyl-(AAQAA)(3)-NH2 Peptide is significantly enhanced using an empirical force field that explicitly includes the treatment of electronic polarizability. Polarizable simulations yield helical content consistent with experimental measurements and indicate that the dependence of helical content on temperature is improved over additive models, though further sampling is required to fully validate this conclusion. Cooperativity is indicated by the peptide sampling either the coiled state or long helices with relatively low populations of short helices. The cooperativity is shown to be associated with enhanced dipole moments of the peptide backbone upon helix formation. These results indicate the polarizable force field to more accurately model peptide-folding cooperativity based on its physically realistic treatment of electronic polarizability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据