4.5 Review

Hypertrophic and Dilated Cardiomyopathy: Four Decades of Basic Research on Muscle Lead to Potential Therapeutic Approaches to These Devastating Genetic Diseases

期刊

BIOPHYSICAL JOURNAL
卷 106, 期 6, 页码 1236-1249

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2014.02.011

关键词

-

资金

  1. National Institutes of Health [R01 GM033289, R01 HL1171138]

向作者/读者索取更多资源

With the advent of technologies to obtain the complete sequence of the human genome in a cost-effective manner, this decade and those to come will see an exponential increase in our understanding of the underlying genetics that lead to human disease. And where we have a deep understanding of the biochemical and biophysical basis of the machineries and pathways involved in those genetic changes, there are great hopes for the development of modern therapeutics that specifically target the actual machinery and pathways altered by individual mutations. Prime examples of such a genetic disease are those classes of hypertrophic and dilated cardiomyopathy that result from single amino-acid substitutions in one of several of the proteins that make up the cardiac sarcomere or from the truncation of myosin binding protein C. Hypertrophic cardiomyopathy alone affects similar to 1 in 500 individuals, and it is the leading cause of sudden cardiac death in young adults. Here I describe approaches to understand the molecular basis of the alterations in power output that result from these mutations. Small molecules binding to the mutant sarcomeric protein complex should be able to mitigate the effects of hypertrophic and dilated cardiomyopathy mutations at their sources, leading to possible new therapeutic approaches for these genetic diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据